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Abstract. We study B meson decays to two charmless baryons in the diquark model, including strong
and electroweak penguins as well as the tree operators. It is shown that penguin operators can enhance
B̄ → BsB̄ considerably, but affect B̄ → B1B̄2 only slightly, where B(1,2) and Bs are non-strange and
strange baryons, respectively. The γ dependence of the decay rates due to tree–penguin interference is
illustrated. In principle, some of the BsB̄ modes could dominate over B1B̄2 for γ > 90◦, but in general
the effect is milder than their mesonic counterparts. This is because the O6 operator can only produce
vector but not scalar diquarks, while the opposite is true for O1 and O4. Predictions from the diquark
model are compared to those from the sum rule calculation. The decays B̄ → BsB̄s and inclusive baryonic
decays are also discussed.

1 Introduction

B meson decays provide a unique setting for baryon pair
production, since this is impossible for theD system. Once
observed, these decays could shed light on our understand-
ing of baryon production, and may offer further probes [1]
of underlying weak decay dynamics such as CP violating
phases.

Many rare mesonic B decays have been observed at
the 10−5 level in recent years, heralding the start of the
“B Factory” era. However, rare baryonic decays have yet
to be discovered. The most recent published limits come
from the CLEO collaboration [2]. Based on 5.8 million BB̄
events, CLEO finds B → Λ̄p, Λ̄pπ− and pp̄ < 0.26, 1.3,
and 0.7 × 10−5, respectively. There was some 2.8σ excess
in the B̄0 → pp̄ channel, but this was insufficient to claim
discovery. The B factories, i.e. the Belle and BaBar Col-
laborations, have now each accumulated an order of mag-
nitude more data. A preliminary result from Belle [3] has
pushed the B̄0 → pp̄ limit down to the 10−6 level. This
rules out the CLEO hint, and puts two-body baryonic
modes in strong contrast to the corresponding mesonic
modes. However, though still elusive, it is quite possible
that charmless baryonic modes are just around the corner.

Theoretical work on rare baryonic decays is sparse.
Most of it was stimulated by the surprising (and false [4])
1987 results [5] of Br(B− → pp̄π−) = (3.7 ± 1.3 ± 1.4) ×
10−4 and Br(B̄0 → pp̄π+π−) = (6.0±1.3±1.4)×10−4 from
the ARGUS Collaboration. Pole models [6,7] and the sum
rule approach [8] have been proposed for calculating the
two-body decay widths, while Ball and Dosch [9] pursued
the diquark model appoach. All of these works are now a
decade old. Not until very recently, sensing that experi-

ment is about to move forward, did theorists start to pay
attention again. Hou and Soni [1] pointed out the need for
reduced energy release on the baryon side, e.g. charmless
baryonic B decays may be more prominent in association
with η′ or γ. Chua, Hou and Tsai studied B̄ → D∗−NN̄
[10] and B0 → ρ−pn̄, π−pn̄ [11] using a factorization ap-
proach of current produced baryons.

For two-body baryonic decays, the sum rule and di-
quark model approaches are the most relevant. The sum
rule calculation [8] predicts that the branching ratio of
B̄ → B1B̄2 is typically of order 10−6 while Br(B̄ →
BsB̄) ≈ (0.3 ∼ 1.0) × 10−5 and Br(B̄ → BcB̄(c)) ≈
O(10−3). Here B(1,2), Bs and Bc denote non-strange,
strange and charmed baryons, respectively. The CLEO
limit of Br(B̄0 → pΛ̄) < 0.26 × 10−5 [2] is already at
odds with the sum rule prediction of Br(B+ → pΛ̄) ∼
1.0 × 10−5. Furthermore the predicted Br(B̄0 → pp̄) ∼
1.0×10−6 is an order of magnitude smaller thanB− → pΛ̄.
This is in contrast with the diquark model [9] which typ-
ically gives a larger rate for B̄ → B1B̄2 over BsB̄, al-
though it can predict really only relative rates. For ex-
ample, the B̄0 → pp̄ mode has larger rate than all the
B̄ → BsB̄ decays. Unfortunately, [9] did not include pen-
guin operators. Judging from the role played by penguins
in mesonic B decays like B → ππ, Kπ, an enhancement
by penguins of Br(B̄ → BsB̄) is to be expected. Further-
more, with penguins ignored, Br(B− → Λp̄) = 0 in the
diquark model, preventing us from comparing with Belle
and CLEO search directly.

The purpose of this paper is to complete the diquark
model treatment of two-body charmless baryonic B decays
by including penguin diagrams, and to assess the impor-
tance of these penguin effects. Whether the approach of
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using diquarks to describe baryon formation is correct or
not is still an open question. Even if one assumes that
the idea is reasonable, to calculate the relative baryonic
decay rates, we still need to make many other dynamical
assumptions, which introduce further uncertainties. Our
goal in this paper is simply to clarify the actual predic-
tions of the diquark model by expanding on the work of
[9]. The experimental measurements in the future will de-
cide whether the diquark model or the sum rule approach
is more relevant in the description of baryonic decays, or
how they might be improved upon. Thus, we do not at-
tempt to improve the diquark model towards absolute rate
calculations.

We find that penguin operators indeed could enhance
B̄ → BsB̄ decay rate by a factor of ∼ 5 for γ = 90◦.
Due to tree–penguin interference, the decay widths now
depend on the unitarity phase angle γ (≡ argV ∗

ub, in the
convention of PDG [12]). The enhancement in baryonic
B decays is milder than in the mesonic decays because
the operator O6 cannot generate scalar diquarks. Pen-
guins also affect non-strange decays, B̄ → B1B̄2, intro-
ducing also a γ dependence, but the effect here is small.
In general, B̄ → BsB̄ is still smaller than B̄ → B1B̄2,
and B̄0 → pp̄ typically has the largest rate. But for large
γ > 90◦, the B̄ → Σ+p̄, Σ+∆++ rate could become larger
than B̄0 → pp̄. We find that the pattern of decay widths
calculated using diquark model is quite different from the
sum rule results. More experimental data should shed light
on the two models.

This paper is organized as follows. We first review the
diquark model and baryonic B decays. The connection
between penguin and diquark operators is discussed. In
Sect. 3, we study inclusive baryonic decays, with two-body
exclusive decays discussed in Sect. 4, in both cases includ-
ing the effect of penguins. The conclusion is given in the
last section.

2 Diquark model and penguin operators

It is well known that the strong force between two quarks
in a color-antitriplet combination is attractive, hence it
has been speculated for a long time that they will form a
bound or correlated state, called the diquark. The flavor
antisymmetric combinations form scalar diquarks, while
flavor symmetric combinations form vector diquarks. The
diquark picture is useful in the description of baryons.
The spin 1/2 octet and spin 3/2 decuplet baryons can be
understood as bound states of a quark and a scalar or
vector diquark, respectively [13].

Diquarks can be generated in weak decays [14–16]. The
tree level weak decay effective Hamiltonian is

Heff =
GF√

2

∑
i=u,c

{
V ∗

iqVib[c1(µ)Oi
1(µ) + c2(µ)Oi

2(µ)]
}

+h.c., (1)

where

Ou
1 = (q̄βuα)V−A(ūαbβ)V−A,

Ou
2 = (q̄u)V−A(ūb)V−A,

and likewise for Oc
1,2. The quark q could be d or s. The

current–current operators are defined by (q̄1q2)V−A ≡
q̄1γµ(1 − γ5)q2. The operators could be rewritten, after
a Fierz transformation, in terms of scalar diquark field
operators. For example

[c1Ou
1 + c2Ou

2 ] = −(c2 − c1)(ub)Lk(ud)∗
Lk

+color sextet current, (2)

with the scalar diquark field operator defined by

(qQ)Lk = εklm(q̄Cl (1 − γ5)Qm), (3)

where k, l,m are color indices. Here q̄C ≡ qTC. The scalar
diquark field operator can create a scalar diquark from the
vacuum with the strength gqQ, usually called the “diquark
decay constant”:

〈0|εklm(q̄Cl γ5Qm)|(qQ)0+k 〉 ≡
√

2
3
δilgqQ. (4)

We see from (2) that a b quark can decay into a scalar
diquark plus an antiquark. Since the baryons are bound
states of a diquark and a quark, it is natural to expect
that in decays to baryonic final states the diquark oper-
ators will dominate and the sextet current operators can
be ignored. Following this reasoning, [9] gives a picture of
two-body baryonic B decays. The antiquark produced in
the decay combines with the spectator antiquark to form
a scalar or vector antidiquark. As the diquark and antidi-
quark fly apart, they pull a quark–antiquark pair from the
vacuum, resulting finally in a baryon–antibaryon pair. Of
course, this may not be the only mechanism, but it is as-
sumed to be the dominant one in the diquark model [9].
It is interesting to note that O1,2 can only generate scalar
diquarks, hence B̄ decaying to a decuplet baryon plus ei-
ther an octet or decuplet antibaryon, B̄ → B∗B

(∗)
, are

predicted to have small rates [9]. These decays can only
arise from the penguin operators O5,6, as will be discussed
below.

In addition to the tree level effective Hamiltonian, it
is well known that penguin diagrams are important for
the charmless decays of B mesons. In mesonic decays like
B → Kπ and ππ, penguin diagrams are crucial in the
calculation of decay rates and CP asymmetries. Their ef-
fects can be described by the effective penguin operators
O3 through O10,

Hpenguin = −GF√
2

{
V ∗

tqVtb

10∑
i=3

ci(µ)Oi(µ)

}
+ h.c., (5)

where

O3(5) =
∑
q′

(q̄′q′)V−A(V+A)(q̄b)V−A,

O4(6) =
∑
q′

(q̄′βq
′
α)V−A(V+A)(q̄αbβ)V−A,

O7(9) =
3
2

∑
q′
eq′(q̄′q′)V+A(V−A)(q̄b)V−A,

O8(10) =
3
2

∑
q′
eq′(q̄′βq

′
α)V+A(V−A)(q̄αbβ)V−A, (6)
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with O3−6, O7−10 the QCD and electroweak penguin op-
erators, respectively, and q = d, s, (q̄1q2)V±A ≡ q̄1γµ(1 ±
γ5)q2. The sum over q′ runs over all quark flavors that
exist in the effective field theory.

The penguin operators can also be written in terms
of diquark operators. Let us consider b → s penguins
(a similar discussion follows for the q = d case). The
(V − A)× (V − A) type penguin operators O3,4 and O9,10
are similar in form to O1,2. They can be written, after
a Fierz transformation, as the sum of diquark operators
±∑

q′(q′b)L(q′s)†
L plus color sextet terms. Again the latter

will be ignored. The sum includes the operator (ub)L(us)†
L,

which is of exactly the same form as that obtained from
O1,2, as well as (db)L(ds)†

L, which is not present in the tree
operators. Note that the q′ = s piece (sb)L(ss)†

L vanishes
since the scalar diquark is antisymmetric in their flavor
constituents.

On the other hand, the (V − A) × (V + A) type pen-
guin operators O5 and O6 do not give rise to scalar di-
quark operators. The reason is that a scalar diquark is
a quark–quark correlation. The operators O5,6 contains
one left-handed and one right-handed quark field, which
cannot form a scalar combination under the Lorentz trans-
formation. In other words, the scalar diquark content of
octet baryons implies that the operators O5,6 (and the
corresponding electroweak penguin operators O7,8) do not
contribute to the B̄ decays to octet baryon plus either an
octet or decuplet antibaryon: B → BB

(∗)
. This is con-

trary to the significant role that they play in the mesonic
decays such as B → Kπ, ππ. However, O5,6 could gen-
erate operators that consist of vector diquarks which O1
through O4 could not produce. By Fierz transformation,
for example,

c5(s̄γµb)V−A(q̄′γµq
′)V+A

+c6(s̄αγµbβ)V−A(q̄′βγµq
′
α)V+A (7)

= −1
2

(c6 − c5)(q′RbL)∗
k(q′RsL)∗†

k + color sextet,

with the vector diquark field operator defined by

(qRQL)∗
k ≡ εklm(q̄Cl γ

µ(1 − γ5)Qm). (8)

Since decuplet baryons are bound states of a vector di-
quark and a quark, O5,6 will produce B̄ decays to a decu-
plet baryon plus either an octet or decuplet antibaryon:
B̄ → B∗B

(∗)
. As mentioned above, these decays cannot

be generated by the tree O1,2 and the penguin O3,4 op-
erators. For example, the novel channel B− → Ω−Ξ

0

(five strange quarks in the final state) could arise from
B− → (ss)∗(su).

To sum up, the effective Hamiltonian that generates
scalar diquarks can now be collected as

Hdiquark ∼ −GF√
2

{
A1(ub)L(ud)†

L + A2(ub)L(us)†
L

+A3(sb)L(sd)†
L + A4(db)L(ds)†

L + h.c.
}
,

Fig. 1. The inclusive decay b → Dq̄

with the coefficients

A1 ≡ V ∗
udVub(c2 − c1) − V ∗

tdVtb(c4 − c3 + c9 − c10),
A2 ≡ V ∗

usVub(c2 − c1) − V ∗
tsVtb(c4 − c3 + c9 − c10),

A3 ≡ −V ∗
tdVtb

(
c4 − c3 − 1

2
c9 +

1
2
c10

)
,

A4 ≡ −V ∗
tsVtb

(
c4 − c3 − 1

2
c9 +

1
2
c10

)
. (9)

For vector diquarks, we have

Hdiquark∗ ∼ −GF√
2

∑
q′=u,d,s

{
B1(q′RbL)∗(q′RdL)∗†

+B2(q′RbL)∗(q′RsL)∗† + h.c.
}
, (10)

with the coefficients

B1 ≡ −1
2
V ∗

tdVtb

(
c5 − c6 +

3
2
eq′c7 − 3

2
eq′c8

)
,

B2 ≡ −1
2
V ∗

tsVtb

(
c5 − c6 +

3
2
eq′c7 − 3

2
eq′c8

)
. (11)

3 Inclusive baryonic decays

Before we discuss the more difficult exclusive baryonic de-
cays, the diquark picture could actually give us useful in-
sight in the inclusive baryonic B decays.

In the diquark model, one postulates that baryons are
bound states of a (scalar or vector) diquark and an an-
tiquark. It is natural to expect that baryonic B decays
proceed dominantly via the process of b quark decaying
into a scalar diquark plus an antiquark. Since the subse-
quent hadronization process always generates at least one
baryon, with the other antibaryon guaranteed by baryon
number conservation, the inclusive baryonic decay rates
can be approximated by the rates of b → Dq̄ (Fig. 1),
where D denotes a scalar diquark such as (ud) or (cd).

This is the approach mentioned by Neubert and Stech
in [15,17]. Though citing the result from the above two
papers, [9] adopted a different method to calculate the in-
clusive rates. It computes the rates of the B meson decay-
ing into a diquark and an antidiquark, i.e. B → DD′. The
two-body channel B → DD′, in which both diquarks are
fast moving, implies that at least two fast moving baryons
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will be generated. Though baryons always appear in pairs
in baryonic decays, this could be too restrictive for in-
clusive baryonic decays, since it ignores the possibility of
slowly moving antibaryons.

The b → Dq̄ rate turns out to be rather close to the
observed inclusive rate. Let us take a closer look. Af-
ter the b → Dq̄ decay, the diquark D, the antiquark q̄
and the spectator antiquark jointly form a color singlet,
just like the three antiquarks in an antibaryon. The fast
moving diquark D pulls a quark q′ from the vacuum to
form a baryon, leaving behind a slow antiquark q̄′. The
color configuration of q̄′, q̄ and the spectator antiquark
is again just like that of an antibaryon. Since q̄ is mov-
ing fast while the other two are slow, the system breaks
up into hadrons through fragmentation. This generates
all kinds of possible final products, but at least one an-
tibaryon has to be generated due to baryon number con-
servation. One possible scenario is for q̄ to form a fast
moving antibaryon by pulling the two antiquarks with it.
Two body baryonic decays are just such a case. Another
scenario is that the fast moving q̄ captures one quark to
form a meson, leaving behind a slower antiquark. The final
products of the decay then consist of a fast baryon, a fast
meson and a slow antibaryon plus possible soft mesons.
The baryon–antibaryon pair mass would then be far be-
low mB . One could also break two strings and capture
two new antiquarks to form a fast antibaryon with the
remaining quarks and antiquarks combining into mesons.
The final products would then be one fast moving baryon,
one fast antibaryon, plus two (or more) soft mesons. In all
the above scenarios, one baryon and one antibaryon are
generated. But the second scenario clearly is not included
in the B → DD′ picture of [9].

We list the branching ratios of b → Dq̄ decays in Ta-
ble 1. The transition amplitude of b → Dq̄ is assumed
to factorize into the product of the diquark decay con-
stant as defined in (4), and the quark level amplitude
〈q|(q̄b)|b〉. For comparison, we also list the corresponding
numbers for B̄0 decay from [9] by adding up appropriate
diquark–antidiquark decay rates. For example, the rate of
b → (cd)ū would correspond to the sum of the rates of
B̄0 → (cd)(ud), (cd)(ud)∗. Unlike the b→ Dq̄ case, calcu-
lating the latter not only involves diquark decay constants
and masses, it also depends on B̄ meson to diquark form
factors. The diquark decay constants we use are [9,18]

gud, gus = 0.179, 0.215 GeV2,

gcd
∼= gcs

∼= 0.35 GeV2, (12)

and the diquark masses are

mud,mus,mcd,mcs = 0.5, 0.7, 1.7, 2.0 GeV. (13)

As expected, the inclusive baryonic decays are dom-
inated by the two charmed modes: b → (cd)ū and b →
(cs)c̄. The combined branching ratio is about 4.6%.
Adding in the rates of the smaller modes b → (cs)ū and
b → (cd)c̄ gives a prediction for the total inclusive bary-
onic B decay branching ratio of

Br(B → baryon +X) = 4.8%. (14)

Table 1. Estimate of inclusive baryonic branching ratios. The
line separates charmed vs. charmless final states

b → Dq̄ B → DD′ [9]

b → (cd)ū 2.2× 10−2 2.0× 10−3

b → (cs)c̄ 2.4× 10−2 5.8× 10−3

b → (cs)ū 1.1× 10−3 2.0× 10−4

b → (cd)c̄ 1.3× 10−3 3.0× 10−4

b → (ud)ū 4.8× 10−5 5.2× 10−6

b → (us)ū 2.1× 10−5 3.9× 10−7

b → (ds)d̄ 2.0× 10−5 0

This is in reasonably good agreement with the experimen-
tal result [12]:

Br (B → baryon +X) = 6.8 ± 0.6%. (15)

The minor deficit is to be expected in consideration of the
possibility of decaying into vector diquarks and other ex-
cited states as well as other mechanisms such as current
produced baryons [10,11]. Though [9] quotes a reasonable
prediction from [15], their approach of simply adding up
the B → DD′ rates would have given a branching ra-
tio that is too small, ∼ 0.8%. This is an indication that
B → DD′ is not inclusive enough. In fact, our discussion
shows that this is rather an estimate of the fraction of the
baryonic events where both baryons are energetic.

We make some observations before turning to exclu-
sive modes. For baryonic decays, the single charm channel
b→ (cd)ū has roughly the same rate as the double charm
channel b → (cs)c̄ since the decay constants gcd and gcs

are equal and both have two-body phase space. This is dif-
ferent from the quark level picture for inclusive b decays,
where b → cc̄s is suppressed by a factor of 3–5 compared
to b → cūd because of having two massive final quarks
in three body phase space. In [9], i.e. for B → DD′, the
difference is even more dramatic: b → (cs)c̄ is more than
twice b→ (cd)ū because of B → D form factors. This fea-
ture of the diquark model can be tested by experiment. For
example, one can study the inclusive decays of B̄ → Ξ0

c +
X and B̄ → Σ0

c +X. These decays arise dominantly from
b → (cs)c̄ and b → (cd)ū, with the diquark (cs) or (cd)
picking up a d quark. The diquark model would predict
Br(B̄ → Ξ0

c +X) ∼ Br(B̄ → Σ0
c +X) in strong contrast

to the expectation that b→ cc̄s is less than b→ cūd by a
factor of three or more. Br (B̄ → Ξ0

cX)×Br(Ξ0
c → Ξ−π+)

has been measured by CLEO [19]. While Σ0
c decays into

Λcπ
− with 100% branching ratio, one would need absolute

measurements of Br (Ξ0
c → Ξ−π+) to perform the test.

For mesonic final states, the charmed rates are 40 to
50 times larger than the corresponding charmless rates. In
baryonic decays, however, b → (cd)ū is 400 times larger
than b → (ud)ū. Part of the reason is that the charmed
diquark decay constant is larger: gcd ∼ 2gud. On the other
hand, while penguin operators enhance charmless mesonic
decays, a similar enhancement is much weaker in the bary-
onic modes, as we will discuss in the next section.
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We can calculate from Table 1 the total inclusive
charmless baryonic decay branching ratio from the di-
quark picture:

Br (B → charmless baryons +X) = 8.9 × 10−5, (16)

which is relatively small. Although this estimate is proba-
bly less reliable than (14), considering the numerous pos-
sible modes to be discussed in detail in the next section,
the largest two-body decay B̄0 → pp̄ is likely below 10−6,
considerably smaller than charmless mesonic decays that
are typically of order 10−5.

In view of the small two-body branching ratios, it is
possible that three body decays could be larger. In a calcu-
lation analogous to that of B0 → D∗−pn̄ [10], it was esti-
mated that B0 → ρpn̄ should be of order 10−5 [11], hence
considerably larger than two-body modes. We note that
the mechanism advocated in [11], that of current produced
pn̄ pair, is not contained in the diquark model discussed
here.

4 Exclusive decays

As described above, two-body baryonic decays proceed
via b → D(∗)q̄ through diquark operators. The diquark
D(∗) captures a quark from vacuum quark pair creation
to form a baryon. The antiquark q̄ pairs up with the spec-
tator antiquark to form an antidiquark D

′(∗)
, which then

captures the antiquark from pair creation and becomes
the antibaryon. Admittedly, this is not a simple process
compared to meson pair formation. We have seen that
Hdiquark generates only scalar diquarks from b decay, and
hence octet baryons, while Hdiquark∗ generates only vector
diquarks and hence decuplet baryons. Octet and decuplet
antibaryons can result from b decay mediated by either
Hdiquark or Hdiquark∗ .

We find that most decay channels involve only one di-
quark operator. We shall follow [9] which calculates the
matrix element of the operators by a decomposition into
four components: the diquark decay constant gD, the B̄
meson to antidiquark form factor 〈D′|(qb)|B̄〉, the quark
pair creation wavefunction, and the baryon wavefunction
(a diquark and a quark form a baryon). The authors adopt
a pole model to calculate the form factor, take a harmonic
oscillator wavefunction in the ground state as the bary-
onic wavefunction and use a non-local wavefunction for
pair creation. Since the latter consists of an undetermined
normalization factor, together with other uncertainties of
the four steps, the diquark model cannot be expected to
predict absolute exclusive rates. But the model may give
a reasonable estimate of ratios of decay rates.

It will become clear that the penguin contributions
usually involve the same or similar matrix elements as the
tree contributions. As a result, the matrix elements cal-
culated in [9] can be used directly in our evaluation of
the penguin effects. Since the purpose of this paper is to
investigate the effect of penguin operators in the diquark
model, we do not attempt to improve the calculation of

Fig. 2. B → pp̄, nn̄ through (ud)(ud)

Fig. 3. The γ dependence of B → pp̄ (dashed), Σ+p̄ (solid)
and Λp̄ (dot-dashed) rates in arbitrary units

the amplitudes in [9], expecting most of our conclusions
to be insensitive to details. We refer readers to [9] for a
discussion of the methods of calculating the various fac-
tors.

4.1 Non-strange decays B̄ → B1B̄2

Let us start with the non-strange decays B̄ → B1B̄2,
such as B̄0 → pp̄, nn̄. Taking B̄0 → pp̄ as an example, the
decay occurs only through the B̄0 → (ud)(ūd̄) diagram, as
shown in Fig. 2. The other decay B̄0 → nn̄ is obtained by
replacing the uū pair by dd̄. Note that the decay through
B̄0 → (dd)(d̄d̄) is impossible due to the antisymmetry
of the constituent quark flavors in a scalar diquark. The
decay rate can be written as

Γ (B̄0 → pp̄) = |A1|2 × |〈pp̄| (ub)k(ud)†
k |B̄〉|2. (17)

The constant A1, as defined in (9) and evaluated at the
scale µ = mb, is equal to 4.1 × 10−3e−iγ + 4.5 × 10−4. The
rate without penguins, as cited in [9], is

|V ∗
udVub(c2 − c1)

∣∣∣2 × |〈pp̄| (ub)k(ud)†
k |B̄〉|2

=
∣∣∣4.5 × 10−3e−iγ |2 × |〈pp̄| (ub)k(ud)†

k |B̄〉|2. (18)

Note that the two expressions differ only in the short dis-
tance coefficients and they share the same matrix element.
The matrix element 〈pp̄| (ub)k(ud)†

k |B̄〉 will be taken from
[9]. Some interesting observations can be made even with-
out obtaining the absolute value.

The rate now depends on the unitarity phase angle
γ due to the interference of penguins with trees, analo-
gous to the mesonic decays [20]. This dependence is shown
in Fig. 3, together with the γ dependence of strange de-
cays discussed later. The penguin contribution is roughly
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Table 2. Relative rates of B̄ → B1B̄2, normalized to
Γ (pp̄)no penguin = 1 for diquark approach [9], and Γ (pp̄) = 1
in sum rule approach [8]. The angle γ is taken to be 90◦

This work [9] [8]

pp̄ 0.84 1 1
nn̄ 0.84 1 0.3
np̄ 0 0 0.6
p∆+ 0.28 0.33 0.1
n∆0 0.28 0.33
p∆++ 0.63 0.75 0.25
n∆+ 0.70 0.83

one tenth of tree in amplitude, and its effect is milder
compared to B → π+π−. The reason is because, un-
like B → π+π−, which receives sizable O6 contribution
through chiral enhancement, the O6 operator does not
contribute in the diquark picture, as discussed earlier.

Other B̄ → B1B̄2 modes exhibit similar properties.
Their rates are listed in Table 2, where all rates are nor-
malized to the pp̄ mode. Decays involving a decuplet an-
tibaryon, B̄ → B1B̄

∗
2, is also possible, as mentioned in

Sect. 2. An interesting channel to search for is the mode
B− → np̄. In [9] it is pointed out that this decay is impos-
sible in the diquark picture. This prediction is still true
even after the penguin contribution is taken into account.
None of the candidate decay diagrams such as the tree
B− → (ud)(ūū) and the penguin B− → (dd)(ūd̄) survive
due to the antisymmetry of the constituent quark in a
scalar diquark. This is very different from the sum rule
calculation [8], in which Br(B− → np̄) is about as large
as Br(B̄0 → pp̄). Thus in the diquark model, one has the
dynamical result of Br(B̄0 → pp̄) ∼ Br(B̄0 → nn̄), but
Br(B+ → pn̄) and Br(B− → np̄) vanish, as seen from
Table 2.

The tree operators O1,2 and penguin operators O3,4
generate scalar diquarks and produce only the B̄ decays
into an octet baryon plus an octet or decuplet antibaryon
B̄ → BB

(∗)
. However, O5,6 could generate a vector di-

quark and hence B̄ → B∗B
(∗)

is possible. Decays B̄0 →
∆+p̄, ∆0n̄, ∆+∆+, ∆0∆0 would arise from the vector di-
quark operator (uRbL)∗(uRdL)∗†, while B̄0 → ∆−∆− and
B− → ∆0∆+, ∆−∆0 from (dRbL)∗(dRdL)∗†. The ampli-
tudes of these decays are proportional to B1 ∼ 1.8×10−4,
which is about one twentieth of A1 ∼ 4.5 × 10−3. The
vector diquark decay constants are roughly the same as
scalar diquark decay constants [18]:

gud∗ = 0.216 GeV2,

gus∗ = 0.245 GeV2. (19)

Assuming that the respective form factors are also of the
same order as that for B̄0 → pp̄, we expect the branching
ratio of B̄ → B∗B

(∗)
to be about 0.0025 × Br(B̄0 → pp̄).

The small rates of B̄ → B∗B
(∗)

is a testable feature of
the diquark model. Because of further numerical uncer-
tainties, this type of modes are not listed in Table 2.

Fig. 4. B̄0 → Σ+p̄

4.2 Strange decays B̄ → BsB

In mesonic B decays, strange decays like B → Kπ have
larger rates than non-strange decays like B → ππ be-
cause of penguin contributions, with Br(B → K−π+) ≈
1.88 × 10−5 compared to Br(B → π−π+) ≈ 4.7 × 10−6.
One may wonder if the same could happen in the bary-
onic decays between B̄ → BsB̄, such as B̄0 → Λn̄, Σ+p̄,
Σ0n̄, versus B̄ → B1B̄2 such as B̄0 → pp̄. This is indeed
the case in the sum rule calculation, which gives Br(B̄0 →
pp̄) = 1.6 × 10−6 while Br(B̄0 → Σ+p̄) = 6 × 10−6. In
the diquark calculation of [9], Br(B̄0 → Σ+p̄) is only 0.15
times Br(B̄0 → pp̄). However, since the penguin operators
are not included in [9], it is of interest to include the pen-
guins to find the actual prediction of the diquark picture.

To include penguins, we proceed just like in the dis-
cussion of non-strange decays. Taking B̄0 → Σ+p̄ as an
example, only one diquark diagram, Fig. 4, through B̄0 →
(us)(ūd̄) will contribute,

Γ (B̄0 → Σ+p̄) = |A2|2 × |〈Σp̄|(ub)k(us)†
k|B̄〉|2, (20)

The constant A2 as defined in (9), evaluated at the scale
mb, is equal to 1.0×10−3e−iγ−2.2×10−3. The rate without
penguins is

|V ∗
usVub(c2 − c1)|2 × |〈Σp̄|(ub)k(us)†

k|B〉|2
= |1.0 × 10−3e−iγ |2 × |〈Σp̄|(ub)k(us)†

k|B〉|2. (21)

Again the two expressions share the same matrix element,
which we take from [9] and find that

|〈Σp̄|(ub)k(us)†
k|B〉|2 � 3.0 × |〈pp̄|(ub)k(ud)†

k|B〉|2. (22)

The expression for A2 indicates that the contribution
from penguins is almost twice as large as the tree con-
tribution in amplitude and cannot be ignored. The ac-
tual branching ratio of B̄0 → Σ+p̄ will depend on the
angle γ (see Fig. 3). The penguin operators do enhance
the rate significantly and Br(B̄0 → Σ+p̄) is larger than
Br(B̄0 → pp̄) for γ > 90◦. However, the effects are milder
than in the mesonic decays. Br(B̄0 → Σ+p̄) is at most
twice Br(B̄0 → pp̄), when γ = 180◦. This is largely be-
cause the operators O5,6 do not contribute to the same
final state, unlike the role of chiral enhancement and con-
structive interference (between O4 and O6) in B → Kπ.
Analogous to B → Kπ and B → ππ, a large γ will en-
hance Br(B̄0 → Σ+p̄) but decrease Br(B̄0 → pp̄). Similar
results hold for the decays B̄0 → Λn̄,Σ0n̄.
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Fig. 5. B− → Λp̄ through (ds)(ud)

Table 3. The relative rates of B̄ → BsB̄ normalized as in
Table 2. The angle γ is taken to be 90◦

This work [9] [8]

pp̄ 0.84 1 1
Σ+p̄ 0.88 0.15 7.5
Σ0n̄ 0.21 0.037
Σ−n̄ 0.72 0
Σ0p̄ 0.18 0 3.8
Λn̄ 0.21 0.037
Λp̄ 0.18 0 < 3.8
Σ+∆+ 0.57 0.10 7.5
Σ0∆0 0.17 0.030
Σ+∆++ 1.1 0.2 7.5
Σ0∆+ 0.080 0.014
Λ∆0 0.086 0.015
Λ∆+ 0.023 0.004

There are pure penguin contributions that were not
given in [9]. The modes B− → Λp̄, Σ0p̄ are two exam-
ples. Nonzero tree contribution would require the diquark
decay channel B− → (us)(ūū), which is impossible due
to the antisymmetry of the constituent. However, these
modes can be generated through the diquark operator
(db)k(ds)†

k, which arises only from penguin operators, as
shown in Fig. 5. This diagram is not calculated in [9], but is
identical to B̄0 → Λn̄, Σ0n̄, respectively, after an isospin
transformation u ↔ d. Hence the rate for B− → Λp̄ is
given by

Γ (B → Λp̄) = |A4|2 × |〈Λn̄|(ub)k(us)†
k|B̄〉|2. (23)

The coefficient A4 is equal to −2.2 × 10−3. Since there is
no tree–penguin interference, the rates for B− → Λp̄, Σ0p̄
are independent of the angle γ, just like B → K0π0

The branching ratios of the modes B̄ → BsB̄ are listed
in Table 3. For comparison, the sum rule [8] results are also
listed, which gives a strikingly different pattern. B− →
Σ+∆++ and B̄0 → Σ+∆+ have rates close to or larger
than the one of B̄0 → Σ+p̄. The γ dependences of their
rates are identical to that of Σ+p̄.

The O5,6 operators could generate B̄ → B∗
sB

(∗)
via

vector diquarks. The decays B̄0 → Σ∗+p̄, Σ∗0n̄, Σ∗+∆+,
Σ∗0∆0, Σ∗+∆++ and B− → Σ∗0p, Σ∗+∆++ can arise
from the vector diquark operator (uRbL)∗(uRsL)∗†, while
B̄0 → Σ∗0∆0, Σ∗−∆− and B− → Σ∗−n, Σ∗−∆0, Σ∗0∆+

a b

Fig. 6a,b. B̄0 → ΛΛ̄ through a (ud)(ud) and b (sd)(sd)

Table 4. The relative rate of B → BsB̄s. Diquark rates are
normalized so that Γ (pp̄)no penguin = 1. Sum rule rates are
normalized so that Γ (pp̄)sum rule = 1. The angle γ is assumed
to be 90◦

Rate [9] [8]

pp̄ 0.84 1 1
ΛΛ̄ 0.38 0.39
Ξ0Λ̄ 0.34 0.059
ΛΣ∗0

0.068 0.082
Ξ0Σ∗0

0.11 0.02
ΛΣ∗+ 0.068 0.082
Ξ0Σ∗+ 0.11 0.02

from (dRbL)∗(dRsL)∗†. The amplitudes of these decays are
proportional to B2 ∼ 9.0 × 10−4, which is about one half
of A4. As described above, Br(B̄0 → Λp̄) is proportional
to A2

4. Assuming that the form factors are of the same
order, we expect the rates of B̄ → B∗

sB
(∗)

to be roughly
1/4×Br(B̄0 → Λp̄) ∼ 0.03×Br(B̄0 → pp̄). This is still an
order of magnitude smaller than the typical B̄ decays to an
octet baryon plus an octet or decuplet antibaryon. Again,
since further uncertainties are involved, the B̄ → B∗

sB
(∗)

modes are not listed in Table 3.

4.3 b̄ → BsB̄s

This category includes decays like B̄0 → ΛΛ̄, Ξ0Λ̄, etc.
The relative rates of these modes are listed in Table 4.
The mode B̄0 → Ξ0Λ̄ is more straightforward since only
one diquark diagram, B̄0 → (us)(ūd̄), is involved. The
enhancement effects from the penguin is very similar to
B̄0 → Σ+p̄.
B̄0 → ΛΛ̄ decay can arise from two diquark diagrams

and hence is more complicated. The tree contribution is
through B̄0 → (ud)(ūd̄) decay plus an ss̄ pair creation
(Fig. 6a). The penguin operators will enhance the Wilson
coefficient in this diagram just like in the case of B̄0 → pp̄.
However, there is one more contribution from the penguin
operator: through B̄0 → (sd)(s̄d̄) with uū pair creation
(Fig. 6b). We shall argue that the penguin contribution is
smaller than the tree.

The short distance coefficient for penguins, A3 = 3.5×
10−4, is smaller than one tenth of the tree V ∗

udVub(c2 −
c1) = 4.5 × 10−3. The matrix element for Fig. 6b is basi-
cally the same as in Fig. 6a, except replacing ss̄ pair cre-
ation by uū. To estimate the effect of this replacement, we
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can compare relative rates of (B̄0 → pp̄) versus B̄0 → ΛΛ̄
calculated in [9], which is about 2.6 : 1. Since the only
difference between them at tree level is just in the pair
creation, this fixes the relative weight of ss̄ pair creation
versus uū. From this, we expect the penguin contribution
overall to be one fifth of the tree. We therefore ignore the
penguin contribution in our reporting of ΛΛ̄ rates in Ta-
ble 4. To obtain the actual numerical value and γ depen-
dence in the future, one would have to evaluate Fig. 6b.

5 Discussion and conclusion

In this paper, we have discussed the effects of penguin
operators on two-body baryonic B decays in the diquark
picture. We point out that the penguin operators O3,4
can also be transformed into operators with diquark fields
and hence the calculation of their contributions is very
similar to that of the tree operators. On the other hand,
O5,6 do not generate scalar diquark operators, indicating
that their contribution to B̄ decays into an octet baryon
is small. As a result, penguin operators will significantly
enhance B̄ → BsB̄. Though the effects may not be large
enough to reverse the general relative order of B̄ → BB̄
and B̄ → BsB̄ as in the mesonic decays, some modes
do have comparable rates. For example, B̄0 → Σ+p̄, after
penguin enhancement, is larger than B̄0 → pp̄ for γ > 90◦.
The B− → Σ+∆++ mode is even of order 30% larger than
B̄0 → Σ+p̄.

The penguin operators O5,6 could generate B̄ decays
to a decuplet baryon. These channels were predicted to
vanish in [9] since the tree operators O1,2 only gener-
ate scalar diquarks. However, the (V + A) × (V − A) type
penguin operators O5,6,7,8 could generate vector diquarks
after a Fierz transformation, which could form decuplet
baryons as the final product. Their rates are nevertheless
small. We estimate the non-strange and strange decays
Br(B̄ → B∗B̄(∗)), Br(B̄ → B∗

sB̄
(∗)) are about 0.25%, 3%

of Br(B̄0 → pp̄), respectively.
The diquark model calculation of the exclusive rates

depends on the pair creation model with an undetermined
normalization factor. Hence, absolute rates cannot be ob-
tained. However, as a result of duality, the inclusive rates
are independent of the pair creation model. We estimate
the inclusive rate for baryonic decays by computing the
rate of b → Dq̄. This calculation relies only on the as-
sumption of the diquark model and the values of the di-
quark decay constants, without a further dynamical as-
sumption about the form factors. The total rate we get
is very close to the experiment result, indicating that the
diquark model is a reasonable picture for baryon produc-
tion. Actually, the theoretical value is somewhat smaller,
leaving some room for other mechanisms.

Since the inclusive prediction relies only on the decay
constants in the diquark model, the agreement also indi-
cates that the values of gcd and gcs used are reasonable.
The ratio of exclusive decay rates can further check the
values of gud and gus. For example, the modes B̄0 → pp
and B̄0 → Σ+

c p have an identical B̄ to antidiquark form

factor, and they differ only in the diquark decay constants
and CKM factors. Assuming that the transition form fac-
tor of B to the antidiquark (ud) is not very sensitive to
the momentum transfer, it will cancel in the ratio of their
rates. A similar argument applies for the pair creation
wavefunction. The ratio can be written as

Γ (B̄0 → pp)
Γ (B̄0 → Σ+

c p)
=

∣∣∣∣Vub

Vcb

∣∣∣∣
2

×
(
gud

gcd

)2

, (24)

allowing one in principle to test diquark decay constant
ratios. Likewise, the ratio of B̄0 → Σ+Λ+

c to B̄0 → Λ+
c Λ

+
c

could test gus/gcd.
It should be clear from the previous sections that the

diquark picture gives rather different predictions from the
sum rule calculation. Most significantly, we note that B̄ →
B1B̄2 is suppressed compared to B̄ → BcB̄, BcB̄c and
BsB̄ in a sum rule treatment [8]. The reason is that, as
the sum rule authors claim, quark pair creation is mainly
a soft process instead of a hard one like in the diquark
non-local pair creation model. A soft process would favor
heavier quarks carrying a larger momentum in the final
product to pick up soft quarks from the vacuum. In the
sum rule calculation, therefore, the amplitude for produc-
ing an additional quark from the vacuum is of order 1 in
B̄ → BcB̄ and BcB̄c but suppessed in B̄ → B1B̄2. Such
effects are much less pronounced in the diquark model.
As a result, B̄ → BsB̄ typically is still smaller than
B̄ → B1B̄2, even after penguins are taken into account.

Another feature of the diquark model is that several
decay modes are missing due to the antisymmetry of the
constituent quark flavor in a scalar diquark. For example,
there is no B− → np̄ while B̄0 → pp̄ and nn̄ have the
same rates. The modes B− → Λp̄, Σ0p̄ are pure penguins
and are smaller than B̄0 → pp̄. The sum rule approach
predicts B− → np̄, Λp̄, Σ0p̄ are of the same order as
B̄0 → pp̄. The decays arising from the penguin opera-
tor (s̄s)V±A(s̄b)V−A such as the novel one B̄0 → ΩΞ̄−
are supposedly possible in a sum rule calculation (though
this is not mentioned in [8]). However the above penguin
operator (s̄s)V±A(s̄b)V−A does not have a scalar diquark
component and thus such decays should be suppressed.
The authors of [9] estimate that these decays, forbidden
by the scalar diquark model, should be suppressed by at
least a factor of 3. The predictions emerging from the two
pictures are, anyway, different enough to be tested in the
near future by experimental observation of B meson bary-
onic decays.

The path to observation and especially understanding
charmless baryonic B decays was bound to be a long and
winding one.
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